Related Rates

For all of these problems, first find exact answers (ie. fractions) and then round to three significant digits.

1. Suppose air is being pumped into a balloon at a rate of 4.5 cubic feet per minute. Find the rate of change of the radius when the radius is 3 feet.
2. A plane is flying on a path to go directly over your home at an altitude of 6 miles. If the distance from the plane to your house is decreasing at a rate of 450 miles per hour when it is 10 miles away, what is the speed of the plane?
3. A camera is watching a shuttle vertically lift off from 2,500 feet away. The displacement function of the ship $s(t)=50 t^{2}$ is measure in feet while the time t is measured in seconds. Determine the rate of change of the angle of elevation of the camera ten seconds after lift off.
4. Water is being pumped in to a canonical tank at a rate of 6 cubic meters per minute. The tank stands point down and has a height of 10 meters and a base radius of 4 meters.
(a) At what rate is the water level rising when its level is 5 m high?
(b) As time progresses, what happens to the rate at which the water is rising?
5. Water is being drained out of a canonical tank at a rate of 16 cubic feet per minute. The tank stands point down and has a height of 20 feet and a base radius of 5 feet. How fast is the water level falling when the water is 10 feet deep? The equation for the volume of a cone with radius r and height h is: $V=\frac{1}{3} \pi r^{2} h$.
6. Consider an isosceles triangles whose two equal sides have length s and the included angle is θ.

- Show the area of this triangle is given by the equation: Area $=\frac{1}{2} s^{2} \sin \theta$.
- If θ is changing at a rate of $\frac{1}{4}$ radian per minute, find the rate of change of the area when θ equals $\pi / 6$ and $\pi / 3$.
- Explain why the rate of change of the area changes even when the rate of change of θ is constant.

7. Drew is walking towards a street light that is 15 feet tall at a rate of 4 feet per second. If Drew is only 5 feet tall, answer the following questions concerning the moment he is 10 feet from the bas of the street light.

- What is the rate the tip of Drew's shadow moving?
- What is the rate the length of his shadow changing? Does this mean it is getting longer or shorter?

8. On a morning when the sun will pass directly over a 40 foot sycamore tree on level ground, it's shadow is 70 feet long at a specific moment in time. At this moment, the angle θ the sun makes with the ground is increasing at a rate of $0.33^{\circ} / \mathrm{min}$. At what rate is the shadowing decreasing? Express your answer in inches per minute and remember to convert to radians!
